City of Allentown, PA

Semi-Annual Sewer Signatory Meeting

Outline of Today's Presentation

- Summary of Model development and calibration
- SSO locations based on a 10-year storm
- Analyses of Individual Improvements
 - Effects of Signatory flows
 - RDII analysis
 - FM Extension
 - Flow EQ Basin (COM FEB)
 - Parallel Sewer
 - · Sealing of MH's
- Alternatives for Elimination of SSO's
- Review of Results
- Conclusions

Model Development and Calibration

- Model Calibration
 Summary
 - Calibration achieved for 169 metering locations from 2008 flow data
- Modified-Calibrated Model
 - Inclusion of excess inflow to system to mimic high antecedent moisture conditions
- Results bracketed between normal and severe wet weather periods

City of Allentown, Pennsylvania

RDII Removal Corrective Action Plan Phase 1 Model Development and Calibration Report Draft

August 2012

Model Modifications

- LCA FEB LCA's new Flow Equalization Basin
- Inputted LCA's operating logic
- LCA FEB modeled at flow input node
 - 3 MG
 - Flows to LCA FEB at 6 MGD
 - Flows out of LCA FEB at 2 MGD
- Under the 10-year Storm
 - → 1.5 MG overflow reduction
 - → 32% overflow reduction
- All results/modeling runs include the LCA FEB

SSO Locations Based on a 10-year Storm

Profile Based on a 10-year Storm (Trout Creek Trunk Sewer)

SSO Locations Based on a 10-year Storm

(Modified-Calibrated Model)

Effects of Signatory Flows

Sensitivity Analysis to Determine Impacts of Signatory Flows

- Wet weather related flows and peaks contribute to overflows, not the dry weather flows
- 40 percent reduction of Signatory flows would significantly decrease the overflows and surcharge

Basis of Analysis	Volume Lost (MG)	Number of SSO Locations	SSO Volume Reduction %
BASE - Calibrated Model	3.21	17	
Signatory Flows Limited to Dry Weather Levels	0.72	8	78%
Signatory Flows Removed	0.68	8	79%
Reduced Signatory RDII (40% reduction)	1.12	11	65%

RDII Analysis

- Identification of Areas for RDII Removal
 - Normalization and Ranking by IDM
 - Basins where overflows occur
 - Grouping of basins
 - Greatest probability of RDII reduction
- Basins were identified to study RDII removal effectiveness

RDII Sensitivity Analysis

- Assumed RDII removal rate of 40%
 - Theoretical
 - Actual removal rates are difficult to determine and could vary significantly
- Determination if RDII removal alone can eliminate SSO's for a 10-year storm
 - 40 percent RDII removal City-wide resulted in one SSO location remaining → RDII removal alone is not the solution
- Targeted RDII Removal

Targeted RDII Removal

Previously Identified Improvements
Little Lehigh FM Extension

Additional Improvements

- Apparent Capacity Issues
 - Trout Creek Trunk Sewer
 - Little Lehigh Trunk Sewer

Solution: Parallel Sewers

And Increase in Park PS Capacity

 Elevated HGL at the KIWWTP IPS

Solution: Flow Equalization Basin (IPS FEB)

- Sealing of Existing MH's
 - 181 MH's already sealed
 - 20 additional MH's modeled to be sealed

Increasing Park Pumping Station Capacity

- LCA and South Whitehall flows are ~30 MGD peak for a 10-year storm
- Increase peak flows through Park Pumping Station to 30
 MGD (for modified-calibrated model 40 MGD is necessary)
- Increasing PS flows may necessitate upsizing portions of the force main to 30-inches

Flow Equalization Basin (MPH FEB)

- MPH FEB modeled to reduce HGL at the KIWWTP IPS
- Various other methods could accomplish lowering HGL
- MPH FEB
 - 48-inch pipeline to storage
 - Maximum surcharge of 1 foot on influent sewer (currently max of 7 feet)
 - Maximum volume of 4
 MG (less if combined with other improvements)
- Significant reduction in overflow volumes and SSO locations

Basis of Analysis	Volume Lost through SSO's (MG)	Number of SSO Locations	SSO Volume Reduction (%)
Existing System	3.21	17	
MPH FEB	1.81	12	44%

Combined Flow Equalization Basin (COM FEB)

- Combines MPH FEB and flow equalization basin associated with force main extension from Park Pumping Station
- Would eliminate the need for two FEB's at the KIWWTP
- Volume would vary depending on other improvements

Combining Various System Improvements

- Combined effects are not additive
- Improvements combined based on their ability to remove SSO volume or eliminate SSO locations
- Ten (10) Alternatives developed

Alternatives for Eliminating System SSO's

Basis of Analysis	Alternative Summary	Volume Lost through	Number of SSO	SSO Volume Reduction
		SSO's (MG)	Locations	(%)
Existing System		3.21	17	
Alternative 1	FM extension, RDII removal (primary and secondary), IPS FEB	1.44	16	55%
Alternative 2	FM extension, RDII removal (primary), IPS FEB	1.50	13	53%
Alternative 3	FM extension, RDII removal, IPS FEB, Trout Creek Parallel	1.02	5	68%
Alternative 4	FM extension, RDII removal, IPS FEB, Trout Creek Parallel, 40% Signatory Flow Reduction	0.25	3	92%
Alternative 5	FM extension, RDII removal, IPS FEB, Trout Creek Parallel, 40% Signatory Flow Reduction, Sealed MH	0	0	100%
Alternative 6	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, 40% Signatory Flow Reduction, Sealed MH	0	0	100%
Alternative 7	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, 10% Signatory Flow Reduction, Sealed MH	0	0	100%
Alternative 8	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, Sealed MH	0	0	100%
Alternative 9	FM Extension, RDII Removal, Trout Creek Trunk Parallel, Sealed MH, Park PS/FM Upgrade, COM FEB	0.06	2	98%
Alternative 10	FM Extension, RDII Removal, Trout Creek Trunk Parallel, Sealed MH, Park PS/FM Upgrade, COM FEB, 40% RDII Signatory Flow Reduction	0	0	100%

Whitman, Requardt and Associates, LLP

WR84

Alternatives for Eliminating System SSO's – Modified-Calibrated Model

	Basis of Analysis	Alternative Summary	Volume Lost through SSO's (MG)	Number of SSO Locations	SSO Volume Reduction (%)
	Existing System		10.57	27	
	Alternative 1	FM extension, RDII removal (primary and secondary), IPS FEB	6.56	16	38%
N. Carlotte	Alternative 2	FM extension, RDII removal (primary), IPS FEB	6.75	16	36%
	Alternative 3	FM extension, RDII removal, IPS FEB, Trout Creek Parallel	6.26	13	41%
	Alternative 4	FM extension, RDII removal, IPS FEB, Trout Creek Parallel, 40% Signatory Flow Reduction	2.06	5	81%
	Alternative 5	FM extension, RDII removal, IPS FEB, Trout Creek Parallel, 40% Signatory Flow Reduction, Sealed MH	1.00	3	91%
-	Alternative 6	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, 40% Signatory Flow Reduction, Sealed MH	0.12	1	99%
	Alternative 7	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, 10% Signatory Flow Reduction, Sealed MH	1.46	7	86%
	Alternative 8	FM extension, RDII removal, IPS FEB, Trout Creek and Little Lehigh Parallel, Sealed MH	2.40	9	77%
	Alternative 9	FM Extension, RDII Removal, Trout Creek Trunk Parallel, Sealed MH, Park PS/FM Upgrade, COM FEB	0.67	6	94%
	Alternative 10	FM Extension, RDII Removal, Trout Creek Trunk Parallel, Sealed MH, Park PS/FM Upgrade, COM FEB, 40% RDII Signatory Flow Reduction	0	0	100%

Conclusions

- Alternatives 5 through 10 adequately address EPA's AO under both scenarios
- Alternatives 6 and 10
 - Eliminates overflows under normal wet weather conditions (calibrated model) and high inflow/antecedent moisture conditions (modified-calibrated model)
 - Requires Signatory participation
- Alternate combinations of improvements and Signatory flow reductions can be investigated

Phase II Corrective Action Plan

- SSES studies for selected basins
- Detailed hydraulic system evaluations
 - Volume of FM FEB
 - Volume of a combined FM FEB and MPH FEB
 - Studies of HGL at the KIWWTP IPS
 - Park Pumping Station Capacity
 - KIWWTP IPS operating levels
 - Size and length of parallel pipelines
 - Surcharge evaluations
 - Determination of Signatory flow reduction
 - Review of LCA FEB operational set-up
- Determination of Costs and Final Alternative
- Other: Evaluation of Work Under the 537 Plan

Outline of Future Efforts

- Additional Flow Metering ???
- Analysis of Flow Metering Data
- Phase II CAP
 - Hydraulic Evaluations
 - SSES Work Plan
 - Review of Data and Compilation of Recommendations
- EPA Approval, Project Phasing, Schedule Adjustment
- Design of Recommended Improvements
- Construction of Recommended Improvements
- Other
 - Work under 537 Plan
 - Allentown Lease of System/Privatization
 - Negotiations with the Signatories
 - · Other?

Whitman, Requardt and Associates, LLP

Questions/Comments

engineers

architects

planners

www.wrallp.com